Strict Majority Bootstrap Percolation on Augmented Tori and Random Regular Graphs: Experimental Results
نویسندگان
چکیده
We study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability p. Each passive vertex v becomes active if at least d deg(v)+1 2 e of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding graphs for which percolation is likely to occur for small values of p. For that purpose we study percolation on two topologies. The first is an n× n toroidal grid augmented with a universal vertex. Also, each vertex v in the torus is connected to all nodes whose distance to v is less than or equal to a parameter r. The second family contains all random regular graphs of even degree, also augmented with a universal node. We compare our computational results to those obtained in previous publications for r-rings and random regular graphs.
منابع مشابه
Majority Bootstrap Percolation on G(n, p)
Majority bootstrap percolation on a graph G is an epidemic process defined in the following manner. Firstly, an initially infected set of vertices is selected. Then step by step the vertices that have at least half of its neighbours infected become infected. We say that percolation occurs if eventually all vertices in G become infected. In this paper we provide sharp bounds for the critical siz...
متن کاملStrict majority bootstrap percolation in the r-wheel
In the strict Majority Bootstrap Percolation process each passive vertex v becomes active if at least ⌈ 2 ⌉ of its neighbors are active (and thereafter never changes its state). We address the problem of finding graphs for which a small proportion of initial active vertices is likely to eventually make all vertices active. We study the problem on a ring of n vertices augmented with a “central” ...
متن کاملOn Percolation in Random Graphs with given Vertex Degrees
We study the random graph obtained by random deletion of vertices or edges from a random graph with given vertex degrees. A simple trick of exploding vertices instead of deleting them, enables us to derive results from known results for random graphs with given vertex degrees. This is used to study existence of giant component and existence of k-core. As a variation of the latter, we study also...
متن کاملStrong-majority bootstrap percolation on regular graphs with low dissemination threshold
Consider the following model of strong-majority bootstrap percolation on a graph. Let r ≥ 1 be some integer, and p ∈ [0, 1]. Initially, every vertex is active with probability p, independently from all other vertices. Then, at every step of the process, each vertex v of degree deg(v) becomes active if at least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small p > 0 and any ...
متن کاملBootstrap Percolation on Random Geometric Graphs Extended Abstract
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014